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Abstract-A generalized method for determining thermal resistances of media experiencing non-uniform 
flux distributions has been evolved. The method was applied to the analysis of heat transfers in a finned 
tube, employed as an absorber in a solar-energy collector. The present study demonstrates that, under 
non-uniform flux distribution, the values of thermal resistances predicted when assuming a uniform flux 
distribution are generally lower than the actual values encountered. However, for a finned-tube absorber 
in a solar-energy collector, this is compensated (either partly or overwhelmingly, depending on the particular 
characteristics of the collector), by the counteracting effect of the distributed nature of the device, which 

results in an axial variation of temperature. 

1. INTRODUCTION 

IN MOST solar-energy collectors a temperature differ- 
ence ensues during operation between the absorber 
surface, where the solar radiation is collected, and 
the working fluid. This is due to the finite thermal 
resistance of the elements through which the collected 
flux passes before reaching the working fluid. The 
effect of this temperature drop on the collector’s ther- 
mal performance can be expressed by an efficiency 
factor F’, which is defined as the ratio of the actual 
useful energy gain by the working fluid to the gain 
that would result if the collector’s absorbing surface 
had been at the same local fluid temperature [l]. The 
presence of the F’ factor in the Hottel-Whillier-Bliss 
expression of the collector efficiency accounts for this 
effect [l], i.e. 

r/ = F’Q-FYJU,(~r--T,,,). (1) 

The factors affecting F’ are considered in this study. 
In particular the case of a finned absorber, where the 
effect of this factor becomes of increasing importance, 
has been analysed. 

2. ANALYSIS 

For most geometries the collector efficiency factor, 
F’, can be expressed as the ratio of two thermal resist- 
ances [ 11, namely 

where U, and U, are the heat-transfer coefficients 
from the absorber and the working fluid, respectively, 

+ Author to whom correspondence should be addressed. 

to the ambient environment. The present analysis is 
developed for absorber geometries for concentrating 
solar-energy collectors, although the results are appli- 
cable equally to non-concentrating collectors. 

The half cross-section of a finned absorber is shown 
in Fig. 1. The particular geometry illustrated has been 
proposed [2] as a more efficient alternative absorber 
configuration for a CPC collector than a tubular 
absorber (i.e. a tube of diameter D in Fig. 1). With 
respect to its thermal resistance, the particular shape 
of the fin shown in Fig. 1 is irrelevant, its length 
wr and thickness 6r being the only parameters to be 
considered. Thus, the problem is equivalent to that of 
a flat fin of the same length and thickness (this is 
depicted by dashed lines in Fig. 1). 

Duffie and Beckman [l] provided analytical 
expressions for F’ of a finned absorber which have the 
following inherent simplifying assumptions : 

(i) the variation of temperature in the axial direc- 
tion along the fluid flow path was neglected and an 
average temperature was taken ; 

(ii) temperature in the radial direction of the tube 
wall was constant. 

Wijeysundera [3] studied the problem without mak- 
ing the first assumption for various absorber geome- 
tries ; in all cases the resulting value of F’ was up to 
4% greater than that given by Duffie and Beckman 
[l]. In the case of a finned tube, the assumption of a 
constant tube temperature is not realistic and will 
result in more favourable (i.e. higher) values for the 
F’ factor. This has been quantified in the present study 
through a more detailed examination of the heat 
transfer in the cross-section shown in Fig. 1. The axial 
variation of temperature has not been considered, so 
the first assumption still holds. 

The collector efficiency factor is analysed in the 
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NOMENCLATURE 

absorber area of the collector [m”] 
ratio of the aperture area to the 
absorber area in a concentrating 
collector 
exterior and interior diameters of a 
tubular absorber, respectively 

(Fig. 1) [ml 
exterior and internal diameters of a tube 
in a finned absorber, respectively 

(Fig. 1) [ml 
interior diameter of the fluid layer 

(Fig. 4) [ml 
fin efEciency (equation (9)) 
collector efficiency factors for a 

uniform and a non-uniform flux 
distribution, respectively 
corrective factor for thermal resistances 
heat-transfer coefficients under a 
uniform and a non-uniform flux 
distribution, respectively [w m-* K-‘1 
thermal conductivity p;V m- ’ K- ‘1 
integer 
steady-state rate of heat transfer [W’j 
steady-state heat flux [w m-‘1 
steady-state rate of local heat losses 
(Fig. 2) yW m-“] 
thermal resistances under a uniform 
and non-uniform flux, respectively 
[K W-‘1 
area [m’] 
infinitesimal increment of area [m*] 
temperature [K] 
local temperature difference between 
a point on the external tube surface at 
an angular position # and the mean 
fluid temperature [K] 

U,, W, heat-loss coefficients between the 
absorber surface and the 
environment, and the working fluid 
and the environment, respectively 
[Wm-* K’] 

W width [m]. 

Greek symbols 

B non-dimensional coefficient 
(equation (26)) 

6 thickness [m] 

% 90 instantaneous and optical efficiencies 
of the collector, respectively 
angle (Fig. 3) [deg] 

c,z angles defining the arc over which 
the flux is delivered to the tube (Fig. 3) 

b-M. 

Subscripts 
amb 
b 
car 

equ 
f 
fin 
i 
min 
t 

r; 1,2 

ambient environment 
bond 
corrected 
equivalent 
fluid 
fin 
interior 
minimum 
tube 
infinitesimal element 
integers used as subscripts. 

Superscript 
mean values. 

FIG. 1, Cross-section of a finned absorber suitable for a CPC collector. The equivalent (i.e. of the same 
absorbing surface) tubular absorber is also shown as dashed lines. 
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following sections for two absorber configurations 
(i) a tubular absorber ; (ii) a finned absorber. 

2.1. Tubular absorber 
For this case, a uniform flux distribution along the 

absorber circumference is assumed, F’ can be ex- 
pressed analytically as 

F’= RL 
RL+Rt+Rc 

where 

RL = l/&CA, (4) 

R 

t 
= D ln (D/Q) 

2Ur 
(5) 

D 

Ri = D,h,A,’ 

The thermal resistances R,, R, and Rf are based on 
the absorber area A, of the collector. However, the 
overall heat-loss coefficient U,_ is normally based on 
the aperture area, then the concentration ratio, C, of 
the collector appears in equation (4) : C = 1 for flat- 
plate collectors. 

2.2. Finned absorber 
For the geometry shown in Fig. 1 and for a uniform 

flux distribution across the top surface of the fin, the 
efficiency factor of the collector can be expressed as 

RL 
F’ = RL + hi, +h& +f,(R, + R,)’ (7) 

The various thermal resistances appearing in equation 
(7) are all based on the absorber area, A,, of the 
collector and are considered below. 

The thermal resistance RL between the absorber fin 
and the environment is given by equation (4). The 
thermal resistance of the free length of the fin is given 

by 

@) 

where the fin efficiency for a constant thickness fin is 
given [l] by 

The terms R,,, R, and Rf in equation (7) correspond 
to the thermal resistances of the bond, the tube and 
the working fluid, respectively, calculated under the 
assumption of a uniform-temperature distribution 
(i.e. the temperatures at the interfaces of fin-bond, 
bond-tube and tube-working fluid are constant). 
These terms can be expressed analytically as 

WtiIJb R, = __ 
wbkb Ar 

R 

t 
= wfin ln (d/4) 

2nk, A, (11) 

R&+ 
XdihfA, (12) 

The non-uniform temperature distribution in the con- 
sidered problem is taken into account by the adoption 
of two corrective factors, fs and ft, applied to the 
values provided by equations (lo)-(12). Because in 
most practical cases the term R, is negligible, the ther- 
mal resistances R, and Rf can be considered together, 
and so a single corrective factor,_&, has been employed. 

When fs =ft = 1, equation (7) corresponds to that 
given by Duffie and Beckman [l], although the term 
R, was omitted by Duffie and Beckman as negligible. 
Evaluating the corrective factors fs and ft allows the 
overall effect of the assumption for a uniform tem- 
perature distribution on F’ to be quantified. 

3. THERMAL RESISTANCES FOR 

NON-UNIFORM HEAT FLUXES 

Consider the heat transfer for the general case 
shown in Fig. 2: the heat flux e,, is delivered to the 
surface S, of a body of an arbitrary geometry and part 
of this flux & is carried away from the surface S,. The 
distributions of the heat fluxes on both surfaces SI 
and S, are arbitrary and heat transfer between these 
two surfaces may occur by conduction, convection 
and/or radiation. Heat is also dissipated over the rest 
of the external surface of the body at a local rate, QL. 
No internal heat generation occurs. 

qu 
NH-- ----- / ,-r,-- i 

I 

\-A d;; --*IL.... 

dSP SP 23 

FIG. 2. Schematic diagram of a general mode of heat transfer 
within a body of arbitrary geometry. 



Under steady-state conditions and for a segment of The corrective factor f given by equation (19) can 
infinitesimal thickness du (Fig. 2) the heat flux & be used consequently to derive the heat-transfer 
entering this segment is coefficient & encountered under a non-uniform flux 

dist~bution as 

(13) h;z = h,,lJ (21) 

The heat flux leaving this segment is 
Supposing that the heat-transfer coefficient h12 is 

known for a uniform flux distribution, equation (21) 

(14) 
can then be used to provide the value of this coefficient 
under a non-unifo~ flux distribution. 

The thermal resistance of the considered element is 
defined as 

4. THE ACTUAL THERMAL RESISTANCE OF THE 

BOND AND THE FLUID 

di=n 

dR* = (& + Qu+du)/2 
The corrective factors fb and x express the ratio of 

the thermal resistance under the actual prevailing flux 

where drf: = TX- Tujidu is the difference between the distribution to the thermal resistance under a uniform 

mean temperatures of the upper and lower surfaces flux distribution. These resistances are calculated 

of the considered element. The total thermal resistance according to equations (18) and (lo)-(12) respec- 

between surfaces S1 and S, can be expressed as tively. 

4.1. The corrective factor_& 

where the boundary conditions applied are R;, = (Fb, - %)/Q (22) 

where T&t is the mean temperature at the contact arc 

(17) 
of the bond-tube, i”r the mean fluid temperature and 
Q the heat flux transferred. The corrective factor ft is 

Equation (16) provides the thermal resistance for 
then expressed as 

the generalized case of heat transfers within one or 
more media. However, its application in a practical 

+R;,* 
R,+& 

(23) 

case involves considerable difficulties in calculation. If 
the side surface of the body is assumed to be perfectly 

Williams [4] gave for this case an analytical solution 

insulated (i.e. &_ = 0, so Q, = & = Q), then 
for the temperature dist~bution on the external sur- 
face of the tube by 

R& = (T’, - ?+J/& (18) 

In the case of &_ # 0, equation (18) will give an 
overestimation of the thermal resistance involved if where . . 
Q = Qz and an underestimation for Q = Q,. If cj,_ is 
varying between S, and S, such that a mean heat flux 

l/h,, = llh~+~~/2k~ (24a) 

Q = (Q, + Q,)/2 ensues between Q, and Q2, then by AT($) is the local temperature difference between a 

employing this latter value a realistic estimate for R;, point of the external tube surface at an angular pos- 

close to that provided by equation (16) can be ition (p and the mean fluid temperature (Fig. 3) htf 

obtained easily. This value can be compared with the heat-transfer coefficient from the exterior surface 

the thermal resistance Ii,, obtained by assuming a of the tube to the working fluid, and 

uniform flux distribution. The value of Ii,, can be 
derived analytically for simple geometries, e.g. for dg/dQ, = 0.5/5 
uniform heat conduction through a slab of thickness 
6 when S, = S, = S, it is R,, = 6/kS. A corrective 
factor f is then defined as x 2 ew-LW+2~~-chol)d4w (2.5) 

n= -m 

f = R;JR,,. (19) d$d# is the intensity of the flux at an angular position 

The thermal resistance R,, is related to the overall 
(6, with 

heat-transfer coefficient hlz between surfaces S, and /i = (h&/4ktBt)“*. (35) 

S2 by Equation (24) can be solved by numerical inte- 

RI2 = l/&S (20) 
gration to provide the mean temperature F,, by 
averaging the values it yields within the range of 

where S = S, or S, is the surface on which hn is based. CpO,r < tp < r&. However, the actual dist~bution 
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According to equation (18), the thermal resistance 
of the tube-fluid subsystem (Fig. 1) is 
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FIG. 3. Cross-section of a tube exposed to a non-uniform 
flux over the range #+,, < 4 < I#+,~. The non-uniform flux 

distribution prevailing for w,/d = 0.75 is also shown. 

(d&/d&) of the flux at the bond-tube interface (equa- 
tion (25)) is not known at this stage. This will be 
derived in the following section by considering the 
fin-bond subsystem. 

4.2. The corrective factor fb 
The subsystem under consideration is shown in Fig. 

4. The thermal resistance of the free length of the fin 
AA’ has been already accounted for by equation (8). 
In the considered subsystem AB,C,C*, the heat flux 
enters through both surfaces AB, and AB, and is 
delivered to surface CC, (Fig. 4). For the purpose of 
evaluating this thermal resistance, it is assumed that 
no thermal losses occur from the fin and the external 
surfaces B,C2 and C,D of the bond and the tube, 
respectively (i.e. the entire collected energy is delivered 
to the working fluid). 

Two distinct thermal resistances occur in the con- 

sidered heat-transfer case, as the subsystem exhibits : 
(i) a thermal resistance R, for the heat flux entering 
from surface AB, ; (ii) a thermal resistance R, for the 

heat flux entering from surface AB, (Fig. 4). The 
overall thermal resistance derives by proportional 
summation of R, and R, as 

R; = (+&in)R, + (1 -W&G)& (27) 

where the fractions (w,,/w~~,,) and (1 -w,,/wfiJ cor- 
respond to the fractions of the heat flux entering from 
surfaces AB, and AB2, respectively. The corrective 
factor fb is then given as 

fb = &I& (28) 

The evaluation of thermal resistances R, and R, 
from equation (18) involves the determination of the 
temperature distribution over (i) surface AB, for a 
uniform flux distribution over this surface only ; (ii) 
surface AB, for a uniform flux distribution over fin 
surface AA only (Fig. 4). 

A numerical solution was obtained by using a finite- 
element computer package [S]. As this could only deal 
with heat conduction, an ‘equivalent’ heat conduction 
problem was devised. In particular, the convection of 
heat from the tube to the working fluid with a heat- 
transfer coefficient hf was replaced by conduction 
through a solid layer of thickness (d-&)/2 (Fig. 4) 
with an equivalent conductivity of 

kequ = Md/2) ln (d/d,“). (29) 

Although this transformed problem does not rep- 
resent accurately the heat transfer behaviour inside the 
tube, it is only with the fin-bond subsystem that we 
are concerned at this stage, for which this trans- 
formation is valid. A value of didi, = 8 has been 
employed for this transformation. 

5. DEDUCTIONS 

Results derived from a combined numerical solu- 
tion of the fin-bond and tube-working fluid sub- 
systems are presented in this section. The values used 
for various parameters are tabulated in Table 1. 

The corrective factor&, shown in Fig. 5 for a range 
of bond widths, exhibits considerably higher values 

- ----------- 
~---------_ 

FIG. 4. The bond element considered, consisting of the non-free length of the fin and the bond (solid lines). 
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Table 1. Values used for various collector parameters 

Parameter Symbol Value Unit 

Concentration ratio 
Overall heat-loss coefficient 
Internal diameter of tubular absorber 
Internal diameter of finned absorber 
Tube thickness in both absorbers 
Thermal conductivity of tube 
Thermal conductivity of fin 
Fin length 
Fin thickness 
Base thickness of bond 
Bond width 
Thermal conductivity of bond 
Heat-transfer coefficient for the 

inner surface of the tube 
Collected heat flux by the absorber 

1.55 
5 

25 
12 
1.5 

385t 
385 

88 
I 
0.5 
0.75dt 

80 

- 
W m-‘K-’ 

mm 
mm 

W;?K-, 

Wm-’ K-’ 
mm 
mm 
mm 

WEEK-, 

variable Wm-‘K-’ 
745f Wm-’ 

t Unless otherwise explicitly stated in the text or on the figures. 
$ This value is based on the aperture area of the collector and incorporates optical losses. 

than unity. The dependence of the fb factor on the 
value of the heat-transfer coefficient inside the tube 
was found to be very weak, so only a single curve is 
shown. 

The flux dist~bution over the arc of the tube in 
contact with the bond was also deduced for all the 
cases considered and was used subsequently for the 
numerical integration of equation (25). A typical flux 
distribution for wb/d = 0.75 is shown in Fig. 3. The 
profiles of the temperature distribution over the 
exterior surface of the tube can be seen in Fig. 6 to 
exhibit a peak at the region corresponding to the 
contact arc between the tube and the bond. The mag- 
nitude of the encountered temperature drop (i.e. local 
tube temperature minus average fluid temperature) is 
shown to depend strongly on the heat-transfer 
coefficient inside the tube. 

The variations of the corrective factor ft, depicted 
in Fig. 7 for some representative cases, are shown to 
depend considerably on the conductivity of the tube 
material. Although& is generally smaller thanf, (Figs. 
5 and 7), the effect off; on the collector efficiency 
factor is greater, as fb is associated with a thermal 
resistance of small magnitude. This is illustrated in 
Table 2, where the magnitudes of the various thermal 
resistances appearing in equation (7) are shown for 
some representative cases. Also shown in Table 2 are 
the values of the collector efficiency factors F’ derived 
without any correction (i.e. fb =ft = 1) and F&,,, 
derived for the actual values offb andf,. 

A more comprehensive comparison between F’ and 
Fi,, can be seen in Fig. 8 : the values of F&, are 
invariably lower than those of F’. For the particular 
values of the parameters used (Table I), the range of 

1.0 I , 8 I I I 
0.4 0.5 0.6 0.7 0.8 0.9 1.0 

OIMENSIONLESS BONO WIDTH, wbld 
FIG. 5. The corrective factor& for various bond widths. 
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FIG. 6. Temperature distributions over the exterior surface of the tube, shown for two values of the tube 
conductivity and two values of the heat-transfer coefficient inside the tube. 
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FIG. 7. The corrective factorA shown for two values of the tube conductivity and three values of the bond 
width. 

Table 2. Magnitudes of the thermal resistances of the fin-bond and the tube-working fluid subsystems. These 
results were derived for values of the relevant parameters appearing in Table 1 

(Wmk: K-1) (Wmh:K-‘) (x loo&) 
.L(R,+&) 

(x IO-‘KW-‘) F’ FL, 

200 0.51 12.54 0.9068 0.901 
385 900 0.51 3.19 0.9701 0.964 

1600 0.51 1.95 0.9786 0.972 

200 0.51 16.21 0.9064 0.878 
45 900 0.51 5.58 0.9696 0.947 

1600 0.51 3.91 0.9781 0.958 
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OR TUBULAR ABSORBER 
,..... ..I’ 

0.98 - 
. ,._. . . .._ 

IF’ 
_ _-- 

HEAT TRANSFER COEFFICIENT INSIDE TUBE,hf IWm-ZK-i) 

FIG. 8. Collector efhciency factors F’ and F&, respectively, for a finned absorber as derived (i) with the 
assumption of uniform flux distribution, (ii) by taking into account the non-uniformity of the flux 

distribution. The curve corresponding to a tubular absorber is also shown by means of dotted lines. 

overestimation resulting without applying a cor- 
rection lies between 0.5 and 3%. Also shown in Fig. 
8 is the collector efficiency factor for a tubular 
absorber, as derived from equation (3) for the same 
values of the relevant parameters that appear in Table 
1. Although a direct comparison of the F’ values is 
not recommended (the heat-transfer coefficients in the 
working ffuid are not necessarily the same under 
actual operating conditions), it can be seen, however, 
that a particular F&, value for the tubular absorber 
is higher than the F’ value for the finned absorber 
throughout the range of hr values depicted. 

6. DISCUSSIDN AND CONCLUSIONS 

An analysis of the collector efficiency factors for 
tubular and finned-tube absorbers in solar-energy col- 
lectors has been presented. This was based on an 
examination of the thermal resistances intervening in 
the path of the heat flow. The empioyed method can 
be applied generally under non-unifo~ flux dis- 
tributions. 

The results derived demonstrate that, under non- 
uniform tlux distribution, the thermal resistances 
involved in a heat-transfer problem are generally 
higher than those corresponding to a uniform flux 
distribution. In particular, for a solar-energy collector 
with a finned absorber, the calculation of the collector 
efficiency factor F’ by ignoring the non-uniform flux 
distribution at the various elements of the absorber 
yields an ou~resrimation of its value by a percentage 

ranging from 0.5 to 3%. However, an underestimation 
of the F’ value occurs [3], by a percentage not exceed- 
ing 4%, when the axial, with respect to the working 
fluid flow, variation of temperature is not taken into 
account. 

Thus, for many finned absorber designs, the coun- 
teracting effects in the axial and radial directions can- 
cel each other out. In such cases, equation (7) with 
fb =ft = 1 will provide a realistic prediction of the 
efficiency factor of the collector. However, the validity 
of such a simplified approach should be verified using 
the presented analysis for generic absorber designs. In 
addition, this analysis provides a more comprehensive 
insight into the overall heat transfers that occur in the 
absorber of a solar-energy collector. 
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RESISTANCE THERMIQUE D’UN COLLECTEUR D’ENERGIE SOLAIRE SOUS UNE 
DISTRIBUTION DE FLUX NON UNIFORME 

RCntn~n traite dune methode generalisee pour determiner des resistances thermiques de milieux 
subissant des distributions de flux non uniformes. Elle est appliqube a l’analyse des transferts thermiques 
dans un tube a ailettes utilise comme collecteur d’energie solaire. On montre que, pour une distribution de 
flux non uniforme, les valeurs des resistances thermiques sont suptrieures a celles predites dans le cas d’un 
flux uniforme. Neanmoins pour un absorbeur a tube ailetb ceci est compenst (soit partiellement, soit 
d&passe suivant les caracteristiques particulieres du collecteur) par un effet dti a la variation axiale de la 

temperature. 

WARMELEITWIDERSTAND DES ABSORBERS IN EINEM SONNENKOLLEKTOR BE1 
UNGLEICHFORMIGER WARMESTROMVERTEILUNG 

Zusammenfassung-Es wurde ein allgemein gtiltiges Verfahren zur Bestimmung des Wlrmeleitwiderstandes 
bei ungleichfiirmiger Warmestromverteilung entwickelt. Das Verfahren wurde auf die Untersuchung der 
Warmeleitung in einem berippten Rohr angewandt, das als Absorber in einem Sonnenkollektor installiert 
ist. Die Untersuchung zeigt, da13 der fiir gleichfiirmige Wlrmestromverteilung berechnete Wlrme- 
leitwiderstand grundsatzlich niedriger ist als der bei unaleichf&rniner Warmestromverteiluna tatsachlich 
ermittelte. Im Absorber eines Sonnenkollektors wird dies jedoch kompensiert (entweder tzlweise oder 
ganz, abhlngig von den jeweiligen Eigenschaften des Kollektors) durch den entgegenwirkenden EinfluB 

der axialen Temperaturverteilung in dem berippten Absorber-Rohr. 

TEI-IJIOBOE COIIPQTklBJIEHI4E AECOPEEPA B KOJIJIEKTOPE COJIHEsHOm 3HEPI-&III 
I-IPIi HEPABHOMEPHOM PACI-IPEaEJIEHklkl IIJIOTHCKJTE? TEI-IJIOBOI-0 I-IOTOKA 

AIRIOTBUEf+Pa3pa6OTaH 0606m&iHbDii MeTOA OnpeneHeHHK TelLiTOBOrO COnpOTHBHeHHK Cpen npH 
HepaBHOMepHOM paCnpe.AeJteHHH lTHOTHOCTB TetTHOBOrO nOTOKa. Melon lIprihteHeH npH aHa.nHse TenHO- 
nepeHOCa B Ope6HHHOfi Tpy6e, HCnOnb3yeMOfi B Ka¶eCTBe a6COp6epa B KOJ’tHeKTOpe COJtHeKHOii 3HeprHH. 
IIoKasaeo, YTO npH HepanHox4epHoM pacnpeneneHHH IUIOTHOCTH Tennonoro noToua 3riaqemin Termo- 
BOrO COnpOTHBJmHHK, nOJtyKeHHt.re B npt?AllOHOKteHmi paBHOMepHOCTH paCnpeJmJteHHK, OKa3bIBarOTCX, 
KPK npaBHJr0, HBKre @aKTHYeCKHX 3Ha’teHHii. QAHaKO, HJni a6cop6epa B @OpMe Op6peHHOii Tpy661 3TO 
3aHii~eHBe 3HaKeHHii KOMneHCripyeTCK (KacTIIYHO HJIH nO,tHOCTbm, B 3aBHCBMOCTH OT XapaKTepHCTHK 
KOlUteKTOpa) npOTUBOnOJtO~HKJM BJlHKHHeM paCtIpeHeJlHTenbHOii +yHKmiW KOHHeKTOpa, KOTOpOe “p”- 

BOAHT K 0ceB0~y BbtpanHiinaHmo TehfnepaTypbr. 


